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ABSTRACT

The Naval Postgraduate School (NPS) has actively explored the design and

implementation of real-time three-dimensional simulators on low-cost, readily accessible

graphics workstations. Many of the simulator platforms have had tremendous success due

to the fact that a common object format was used. Prototyping time is dramatically reduced

when the tedious and often repetitious task of object design is replaced with the simpler task

of modifying an existing object description file. The current level of support that the NPS

Object File Format (OFF) provides is descriptions for lights, lighting, material

characteristics, the expected graphics drawing primitives (lines, polygons, surfaces,...), and

provisions for texturing and special lighting effects (spotlights, decaling .... ). The objectives

of this research are the enhancement of the basic OFF structure with information necessary

for accurate physically-based rendering in real-time; to construct a library of functions

specifying an object's physical properties and the internal/external forces controlling the

object and to develop a tool to rapidly design and test an object's dynamic characteristics.
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I. INTRODUCTION

A. THE BASIC OBJECT FILE FORMAT

In the past, the various areas of real-time, three-dimensional (3D) visual simulator

research at the Naval Postgraduate School (NPS) have had specific scope and purpose for

a unique vehicle platform. Simulation design and implementation techniques optimized the

technology of workstations in use. Advances in workstation hardware and software have

always lead to more accurate simulations with each successive generation. An area of

concern was to prevent an iconoclastic attitude between existing simulation projects and to

facilitate the rapid prototyping of new simulator platforms. It soon became evident that

future simulator development would demand a more unified protocol for object/scene

description, rendering, and manipulation.

Advances in hardware capabilities such as lighting and texturing were painfully

absent from these early simulations. There was no ability to quickly modify and port

various objects between platforms; object renderings and control modifications were

tedious for the platform's author let alone a follow-on design team. The NPS Object File

Format (NPS OFF or simply OFF) initial research was designed to solve these problems by

introducing an editable ASCII file with the information necessary to render an object along

with various support routines to show, manipulate and save OFF objects (Zyda 199 1a, Zyda

1991b).

The version 1.0 OFF consisted of lights, light model, material (color) and drawing

subprimitive (lines, polygons, surfaces) definition tokens along with some administrative

tokens for file maintenance and readability. The rendering of an object was accomplished

in 3 steps: 1) pre-render paLing of the ASCII file into a dynamically allocated structure of



object definition opcodes, 2) re-render definition of lights and light models, 3) traversing

the opcode list, drawing only the graphic primitives and selecting the "currently active"

light, light model or material definition. Step 3 is the only one required each time through

the display loop.

B. ADDITIONS TO THE BASIC OBJECT FILE FORMAT

Further enhancements to OFF included tokens to select textures, decaling, 2-sided

lighting, spotlights and other rendering attributes. While current OFF objects looked just

like the real world objects that they were simulating, unfortunately, many of the OFF object

simulations did not behave realistically. As each OFF object was nothing more than a

description of its "skin", it was usually animated by implicitly specifying changes in linear

position/velocity and orientation. OFF objects could quite literally become "...faster than a

speeding bullet, more powerful than a locomotive..." and defy many more laws of physics

that we implicitly, if not explicitly, understand.

1. Incorporating Physical Realism

More recent research -at NPS, specifically the Autonomous Underwater

Vehicle (AUV), has taken a current OFF submarine object and animated it under the

constraints of accurate hydrodynamic laws of motion (Jurewicz 1989). The result is an

amazingly realistic, both visually and physically, simulation of one specific OFF object. A

small drawback of the AUV simulation is that the physically-based modeling (PBM)

representation of the dynamics is hardcoded. Adding/adjusting the AUV's dynamics is not

a simple task, and the integration of a physically different submarine model would require

software maintenance by a knowledgeable AUV programmer.
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C. RELATED WORK

1. bolio

bolio is an integrated graphical simulation platform developed by David

Zeltzer et al at MIT's Media Lab (Brett 1987, Sturman 1989, Zeltzer 1989). The project's

goal has been to provide an environment that animates objects governed by a network of

constraints (dynamic and kinematic). The bolio file format is similar in nature to OFF in

that the top level file contains ASCII keyword/value pairs specifying object characteristics.

While bolio identifies additional binary data structure files, OFF remains completely

ASCII. The product development at NPS is almost exclusively experimental research and

it was felt that a 100% human readable file format was needed during platform prototyping.

When the final project design has been accepted, each OFF file can be converted into binary

to decrease file I/O time.

While bolio has demonstrated exceptional realism with the constraint-based

movement of a few articulated bodies, the OFF and the NPS simulation network

(NPSNET) programs have been more concerned with the real-time animation of a legion

of 3D icons (Zyda 1991c). Only with recent advances in workstation hardware, has there

been a capability to render a multitude of minimally articulated vehicles, in real-time. The

vehicular nature of most NPSNET objects has lead toward a more interactive form of

object-control, rather than bolio's use of kinematically specified task-level manipulations.

Also, the constraints in OFF are used more as a specification of an object's physical

capabilities, rather than a notation for an object's desired behavior.

2. Virya

Virya is a graphical editor for specifying an articulated object's motion-control

characteristics, designed by Jane Wilhelm's group at UCSC (Wilhelms 1986, Wilhelms

1987). A user can assign to each body's degree of freedom (DOF), one or more controlling
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functions (forces or torques vs. time or positions vs. time). These functions can exist in one

of many control states such as position or dynamics control, frozen or relaxed. The control

functions are cubic spline curves delineated by control points maintained in an ASCII file

format.

3. Notion

Additional motion control work by Jane Wilhelm's group describes a

technique that allows a user to depict an object's behavior based on internal sensors

(provocation detectors), effectors (propulsion mechanisms) and mappings (connections

and nodes) between them (Wilhelms 1990). Connections provide data transfer/

modification from sensors to effectors, while ncies permit multiple connections from

many sources of input/output. This technique has been demonstrated with an interactive,

workstation-based system called Notion which allows a user to specify and view an

object's behavior-derived motion.

4. Dynamic Constraints

Barzel and Barr present an approach to controlling rigid bodies with dynamic

constraints (Barr 1987, Barzel 1988a, Barzel 1988b). These constraints are instanced and

then sustained throughout the animation using inverse dynamics. The resultant "constraint"

forces determine the object's motion. Rather than construct "constraining" forces, we are

more interested in specifying "controlling" forces, similar to Barzel/Barr's use of external

forces to guide objects prior to constraint initiation.

D. PBM ENHANCEMENTS TO THE OBJECT FILE FORMAT

This paper describes an approach for enhancements to OFF which bestows an object

with physical characteristics and provides mechanisms to govern the object's motion given

a list of known internal and external forces acting on the object. We have developed a

4



rudimentary algorithm for the automatic maintenance of multiple objects' current

placement and orientation in real time. Using a tool developed at NPS called the OFF

Mover Tool, a designer can view OFF objects from all perspectives, including those from

an object's point of view. After a set of forces is added and adjusted in location/affect, the

designer is then able to "test-drive" an object to verify its force characteristics. Constraints

on the force actuators and object movement are easily added or changed. The modified OFF

object is saved back to a file and is ready for integration into any simulation utilizing the

OFF library of object and force functions. In Chapter II, basic dynamics theory for object

animation is discussed. Chapter III describes the use of a layered approach to the creation

and application of force defin ,ions, force control and action control in OFF. Chapters TV

and V describe the capabilities and performance of the NPS OFF3 Mover Tool

development and testing simulator. Chapter VI concludes with a description of future work

to increase the accuracy and realism of the physically-based modeling while lowering the

final complexity of user-specified object movement.

5



II. THE DYNAMICS OF OBJECT ANIMATION

A. INTRODUCTION

The use of dynamics in rigid-body simulations requires a delicate understanding and

balancing of geometric and algorithmic complexities. If we are interested in modeling the

precise physical interactions of simple objects, we can afford the computational expense of

dynamics simulation. Increasing an object's structural complexity and having it interact

with a greater number of peer objects, strains many dynamics algorithms to the point where

they are unusable for real-time simulation. It is clear that the use of dynamics to simulate

Newtonian mechanics is essential for most forms of motion (ballistic, robotic, ambulatory

and piloted). The following sections attempt to provide broad insight into simplifying the

task of dynamics integration. Additional amplification is available in two exceptional

references, Jane Wilhelm's dynamics tutorial (Wilhelms 1988) and Goldstein's mechanics

theory text (Goldstein 1980).

B. NON-DEFORMING FORCES

1. Initial Conditions

The object's current position and orientation are calculated based on a set of

current initial conditions:

[P op opzl (position)

XY,0Yo, 00 (orientation)

(I(P (P ( ) (linear velocity)
6 'p61 Yo 0 ] P
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[ (0 ( ) (angular velocity)
61- X0 9-1 Yo Y,1 20]

and initial time to.

Often, the initial velocity values are not needed as most objects begin life

motionless. Nevertheless, the ability to create an object, such as an airplane, in all phases

of its movement description requires a provision for non-zero initial velocities.

2. Newton's Laws

Fxyz = m x axyz

or simply "A given force acting on a given mass will accelerate it."

More specifically,

FXYZ = mx (Pxyz) TXYZ = mx -(
and

where FX -- the net force directed at the object's center of mass and
TXYZ  -- the net torque directed at the object's center of mass
m = object mass

2/t&2 (p x) = linear acceleration component
82/t(Oxyz) = angular acceleration component

3. Local Frame of Reference

Each non-deforming force vector is converted into two collision coordinate

system vectors; one that affects a torque (tangential) and one that affects a translation

(radial) in each of the XY, YZ and XZ planes respectively, (Figure 2.1). Since each

component of the movement force 6-vector (three tangential forces and three radial forces)

7



is mutually exclusive, they are summed to generate a cumulative object frame movement

force 6-vector.

z

or c World Collision
Coordinate Coordinate

fre System System

vector
Figure 2.1 Force Components

The movement force 6-vector specifies an object-frame acceleration 6-vector

(the three tangential force components create three rotation acceleration components as the

remaining three radial force components create three translational accelerations). For

example, in the XZ plane, only the X and Z components create linear motion and torque

about the Y axis. Each force adds its effects to the object's six object frame of reference

accelerations along and around each of the three object's axes. An object-frame velocity 6-

vector is calculated using constant acceleration over the integration time interval St. Both

6-vectors are then mapped into their world frame counterpart 6-vectors. These world frame

accelerations and velocity 6-vectors are then used in a modified Euler integration (Spiegal

1988).

-(Fpxy) =I-t~y) t (px) x S

........... p ) + X YZ )-

-(FOxy) = - (fI~ + t(x z )  t

These two equations calculate final linear/angular velocities, given current

velocities and accelerations over a time interval t.

(te hre agetil ocecopoetscrat hre ottonacelrtin omoens s8h



FPxyz = Ipxyz + (- (Fpxyz ) x st) + .5 × (P)t ~ (0.5 8t 62

FO = Jp + ( -(FO x 8t) + .5 x s 2 (y x (8t)2
xyz xyz 6t xyz 0- T2 xyz

These two equations calculate final linear/angular positions, given current

positions/velocities and predicted velocity averages at sample time.

where 51f&(Fpxyz) = final linear velocity component
8/6(FOxy) = final angular velocity component
Fpxyz  = final position component

,PXYz = initial position component
FOxyz  = final orientation component
I0 z  = initial orientation component
Bit = time interval since last integration

The modified Euler method was selected for its simplicity and iterative speed.

Each object's force list is updated once per rendering loop, therefore nullifying the

additional precision provided by second order and higher methods of integration.

Obviously, Euler's method will lose accuracy as each object is subjected to rapidly

changing forces. A future implementation will sample the force updates in parallel, track

the relative changes in linear/angular accelerations and switch to a higher order integration

method, such as Runge-Kutta, under a rapidly moving scenario.

4. Global Frame of Reference

Each global force (such as gravity) affects the object at its center of mass

causing only linear acceleration. Since the movement does not involve rotations, it can be

added after the net effect of all local forces is determined.

9



C. DEFORMING FORCES

A deforming force affects the object in one of three ways. Each polygon in the object

has an associated break and bend threshold token specified in newtons/meter2 . Using the

relationship that a force dissipates its kinetic energy inversely over the square of the

distance from the force origin to the polygon, a dissipated force per unit polygon surface

area value is calculated. If the force is strong enough to break the polygon, the original

polygon token is removed from the object token list and replaced with a list of smaller

triangular polygonal shard tokens, (Figure 2.2). Triangles are used to guarantee planar

polygons.

Snips Slices

3 
5

2

Figure 2.2 Breaking Force

The shards are initially determined by "snipping" off the corners of a multi-sided

convex polygon, thus spiraling inward until the remaining quadrangle is divided in two.

The rationale is to 1) prevent identical "pizza slice" shards as explosions are rarely

symmetrical and 2) generate (n-2) versus n fragments from an n-sided polygon. Any

remaining shards are broken along their hypotenuse, as needed.

If the force is only strong enough to bend the polygon, the polygon token is removed

from the object token list and replaced with a new bendable polygon that tracks a moving

point of bending force impact, (Figure 2.3). The bending force is modeled using Hooke's

10



Law and a spherical spring that seeks to return the moving vertex back to the polygon's

actual point of impact.

Top view Front view

PC

Figure 2.3 Bending Force

Fxyz = -(ks x Axyz + kd x Avxyz)

where Pi = initial point of bending force impact
Pc = current point of bending force impact
Fxyz  = linear bending component
ks  = spring constant
kd = damping constant
Apxyz  - difference between the position components of

the initial and current points of impact
Avxy z  - difference between the velocity components of

the initial and current points of impact

If the force is neither strong enough to break or bend a polygon, then it may only push

a polygonal shard.
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IH. A LAYERED APPROACH

A. OBJECTIVE

The initial objective of this research was to provide a structured mechanism for object

behavior control that would allow varying degrees of user and designer involvement with

the simulation. The end user is concerned with realism: visual accuracy and similarity of

interface (i.e look andfeel). The simulated object's appearance and movement must closely

resemble its real world counterpart. Objects that instantly accelerate to highly unnatural

velocities provide a temporary sensation of giddiness, bordering upon the comical. A lack

of expected visual clues from the objects' Newtonian interactions, such as the lack of

gravity effects, reduces the allure of the virtual reality. A similar degradation in simulator

immersion is also evident when the user is expected to identify and interface with an

inordinate number of forces, which are manipulating several objects.

B. METHOD

The desired implementation would allow the art design team to create a specific

object hierarchy with realistic shape, colorings and positioning data. The engineering

section would then add the subobject physical attributes (mass, center of mass and object

elasticity) and affecting force descriptions (force position, or point of affect in the object's

frame of reference, along with the force direction unit vector, magnitude and type of force).

Reasonable defaults for omitted physical attributes are assumed and/or calculated from

other specifications. The analysis team would then specify mappings between subobject

movement and the forces affected by such movement. The end user is then able to control

a given object in a realistic manner with realistic results by manipulating a set of control

subobjects linked to local forces. The result is an adjustable "focus" in specifying high-

12



level object motion in a range of control modes: directly, indirectly through local force

control, and even more indirectly with subobject control.

The final objective was to design a suite of tools, so that a single user, with even a

limited background in Newtonian mechanics, could rapidly design and test an object's

physical characteristics.

C. DESCRIPTIONS OF EACH LAYER

Similar to Barr's view of Teleological Modeling (Barr 1988), the approach is for each

layer to provide a control description to the layer below. The lowest layer consists of

rendering descriptions (drawing primitives, materials and lighting controls to color their

skins). The second layer consists of the object's physical characteristics and a set of force

descriptions (a list of forces and their influence upon specific objects). The third layer

consists of action descriptions (a mapping of an object's movements to changes in a set of

force descriptions) (Figure 3. 1).

D. PRIMITIVE ADDITIONS

As described in Chapter I, the version 1.0 OFF file supported only drawing

subprimitives such as lines, polygons, and meshed surfaces. Other common generalized

surface primitives (cones, cylinders, spheres and parallelepipeds) were usually calculated

off-line, with their polygonal data stored into an OFF file. The major disadvantage to this

approach was that these OFF files were extremely large and difficult to edit. As scenarios

requiring different colors on a primitive were rare at best, the inclusion of a set of

parametrized primitive descriptions was required. For example, a cylinder token is

specified by a height, radius, and quality factor that indicates the maximum number of

polygons or mesh points to use in the rendering. The advantages were automatic minimal

polygonal computation based on ranging data from a specified viewpoint, a simple

13



Control action mapping
Visual accuracy and characteristics and
ease of use. manipulator placement/effect.

Level 3

Realistic physically-based Control object physical
animation. Interface overtasking characteristics and force
likely for complex models. placement/effect.

Level 2

Manual object positioning. Control size, shape and color.
Acceptable for Keyframe animation

Level 1

Figure 3.1 Layered Approach to Control Modeling

mechanism for multiple object resolution creation and known mass/center of mass values,

to name a few.

E. OBJECTS AND FORCE CONTROL

The models in the various NPS simulators have quite an eclectic background. Some

came from non-organic sites such as NASA and MIT, requiring conversion from other file

formats. Many others were designed inhouse and more often than not, the various models

were rarely scale compatible. The first set of extensions to the OFF language, (Table 1),

included tokens to specify and convert between the various units of measure (Layer 1).

TABLE 1: UNITS OF MEASURE

Token Function Argument Type(s)

units of dimension char

units of force char

units of mass char

14



1. Object Modeling Requirements

The next set of extensions, (Table 2), included tokens to specify the physique,

initial conditions, and motion boundary conditions of an object (Layer 2).

TABLE 2: OBJECT CHARACTERISTICS

Token Function Argument Type(s)

initial position float, float, float

position constraints (low) float, float, float

position constraints (high) float, float, float

initial rotation float, float, float

rotation constraints (low) float, float, float

rotation constraints (high) float, float, float

initial linear velocity float, float, float

linear velocity constraints (low) float, float, float

linear velocity constraints (high) float, float, float

initial rotation velocity float, float, float

angular velocity constraints (low) float, float, float

angular velocity constraints (high) float, float, float

mass float

center of mass float, float, float

elasticity float

bounding volume radius float

bounding volume length float

bounding volume width float

bounding volume height float

viewpoint from object float, float, float

15



A default bounding volume is calculated as the object is read into memory.

Provisions for specifying a smaller (or larger) bounding description (spherical, rectangular

or ellipsoid) were added to facilitate parallel research efforts in collision detection. As

much of the research at NPS involves the simulation of piloted vehicles, the inclusion of a

vehicle viewpoint was a requirement.

2. Force Modeling Requirements

The next set of extensions, (Table 3), included tokens to specify the capabilities

and constraints of a force acting upon an object (Layer 2).

TABLE 3: FORCE CHARACTERISTICS

Token Function Argument Type(s)

name char

type deforming, non-deforming, or global

origin float, float, float

origin constraints (low) float, float, float

origin constraints (high) float, float, float

direction float, float, float

magnitude float

magnitude constraints float, float

asleep yes or no

The concept of a "sleeping" or suspended force is to leave the force attached to

the object but remove its effect. The rationale for this was for simplification during the

force definition and analysis phase. A given force can be isolated by leaving it the sole

"awake" or active force. The unacceptable alternative is to nullify the other forces by

restricting their magnitudes and/or directions.

16



F. OBJECTS AND ACTION CONTROL

What we have now is a "marionette" object that is manipulated by pulling and

pushing "force" strings and rods. For objects with a simple description of force effectors,

this is quite acceptable as each force can be visualized as a controlling "object" rather than

a force. Realistically, most objects' movements are described by a complex network of

forces, yet controlled from a small number of input sources. Layer 3's objective will be to

identify a small set of control objects and provide a mapping from their movement

(translations/rotations) changes to a set of force description (origin/direction/magnitude)

changes.

We will want to specify a set of dynamic controlling forces and then provide an

abstraction for altering their affect based on user input changes. As early key-frame

animation control systems identified key object positions and then interpolated the in-

between positions as a function of time, so should we specify key controlling force effects

and then interpolate the in-between effect components as functions of a user input position/

orientation. This approach will provide for a natural migration from simulated input

sources to actual hardware/sensor input sources.

For example, a jet object has three forces that describe the effects of two ailerons and

one stabilizer. The action induced by their movement is controlled by one input source, the

pilot's stick. The user will describe simple mappings for the stick's lateral rotation

(affecting the aileron forces) and longitudinal rotation (affecting the stabilizer force).

Adding additional mappings for throttle/rudder pedal positions and we will have an

airplane that is fully controllable with changes in the input device's position and

orientation, (Figure 3.2).
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Figure 3.2 Linking Subobject Movement to Forces

As the construction of Layer 3 is part of continuing research, the following is a

specification for a possible OFF file mapping from si,bobject movement (translations/

rotations) changes to a set of force description (origin/direction/magnitude) changes:

defmapping sample-map-name
sampleobject sample-object_name
sample-force samplejforcename
rottoforceorigin matrix
rottoforce-vector matrix
trans_toforceorigin matrix
trans-to forcevector matrix

defend

Each object and force has an initial (neutral) state specified in their respective

descriptions. Each respective 3x3 matrix would transform a 3-vector (controlling object

rotation and translation changes) into another 3-vector (force origin and vector incremental

updates). Additional mappings would iquire velocity information as well.
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IV. THE OFF MOVER TOOL

A. MOTIVATION

The objective of the OFF Mover Tool is to provide an environment to design and test

the dynamics of OFF objects. An OFF object without physical characteristics is read into

memory from disk and the object is measured for future calculations. A default mass, mass

center, elasticity and object viewpoint are calculated. The user is then able to "fine tune"

any of these approximations based on known data. The user then specifies the initial values

for object position, orientation and velocity. At the lowest layer of the tool's control, the

user is able to continually update the object's movement by indicating the linear/angular

direction and speed. This would be acceptable for specifying instances for a keyframing

sequencer, but we are more interested in providing mechanisms to accelerate the object just

like its real world counterpart. The mechanism of choice is a force description.

B. APPLICATION

The user controls a set of forces that are in turn, controlling the object's movement.

A force is positioned around an object and its range of effect is specified. For example, our

jet fighter object is re-read into the Mover Tool and the engine forces are added via a force

interface, (Figure 4. 1). A separate force vector is positioned in the center of each exhaust

nozzle, initially directed forward (direction of the reactive force) and parallel to the turbine

housing, with a zero newton magnitude. The force's magnitude is constrained by a non-

negative range of thrust values. The point of effect is also given a small range of values

along the axis parallel to the direction of thrust to account for the change in thrust position

when the engine is operated in afterburner and additional fuel is combusted behind the main
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Figure 4.1 Force Panel

combustion chamber. Similar forces are added to the wings for lift and drag forces created

by the various control surfaces (flaps, ailerons, spoilers,...).

Additional pseudo forces, such as parasitic drag can he added to tune the realism. The

result is a vehicle that will maneuver with amazing realism. The object can be "test flown"

in isolation or with other testbed objects to verify the object's force parameters. The object

is saved to a file when the desired physical model is accepted. The OFF file force

descriptions are always editable with any ASCII text editor.

The following is a sample OFF file force description for the plane's left engine:

defforce left-jet.engine
force.type non-deforming
force_origin -4.0 0.5 -0.8
force_originlow 0.0 0.0 0.0
force-origin.high -4.5 0.5 -0.8
forcedirection -1.0 0.0 0.0
forcemagnitude 8000.0
forcemagnitude_constraints 0.0 10000
asleep no

defend
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C. POSTDESIGN

The same functions that are used to animate objects in the OFF Mover Tool are

embedded in the NPS OFF function library. In addition to the functions that read in an

object file, ready it for display, and display it each time through the display loop, are a host

of new functions that: add/delete objects and forces from the animation environment,

navigate the object/force lists, alter the object/force parameters, and start/stop the

animation process. For more detail, see Appendix B: PHYSICALLY-BASED

PROCEDURES.

21



V. OFF SAMPLES AND INTEGRATION

A. OFF FILE SAMPLE

The following is a fragment of an OFF file description of an SU-25 Frogfoot Soviet

ground attack aircraft.

/* These are ALL of the required units of measure. */
Note: each subtoken is separate and none are required (defaults used). */

defunits
/* All lengths are in meters. Other length choices are available. */
dimension meters
/* All force magnitudes are in newtons. Other force choices are available. */
force newtons
/* All mass amounts are in kilograms. Other mass choices are available. */
mass kilos

defend

/* These are ALL of the required object characteristics.
Note: each subtoken is separate and none are required (defaults used). */

defphysics
/* This object's initial position is (X,Y,Z) in meters relative from the
environments's center. Unless otherwise specified, all triples are XY,Z
respective. */
location 0.00 0.00 0.00

/* The object's position is constrained to a one meter level square, relative from
the object's initial position. */
locationlower -1.00 -0.00 -1.00
locationupper 1.00 0.00 1.00

/* This object's initial orientation (Roll, Yaw, Pitch) in degrees. *1
orientation 0.00 0.00 0.00

/* The object's orientation is unconstrained. */
orientationlower 0.00 0.00 0.00
orientationupper 360.00 360.00 360.00

/* The object's initial linear velocity in meters/second. */
linear 0.00 0.00 0.00
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/* The object's linear velocity is constrained to: 0.00 to 1000.0 longitudinal,
+/- 1000.0 vertical and +/- 500.0 latitudinal. */
linearlower 0.00 -1000.00 -500.00
linear-upper 1000.00 1000.00 500.00

/* The object's initial angular velocity in degrees/second. */
angular 0.00 0.00 0.00

/* The object's angular velocity is constrained to: +/- 10.00 longitudinal, vertical
and latitudinal. */
angularjlower -10.00 -10.00 -10.00
angular.upper 10.00 10.00 10.00

/* The object's center of mass and amount in kilos. */
massamount 25000.00
masscenter 0.00 0.00 0.00

/* The object's ability to absorb local forces. (0.0 is perfectly inelastic) */
elasticity 0.80

/* The dimensions of the object's bounding volume (e.g. for collision detection).
The volume dimensions are calculated if this data is omitted. */
bv_radius 30.00
bvlatitude 15.00
bvlongitude 20.00
by_vertical 8.0

/* The location of the object's local viewpoint.
setviewpoint 0.00 38.241650 0.00

defend

/* These are ALL of the required force characteristics for this force.
Note: each subtoken is separate and none are required (defaults used). */

defforce left-jet.engine
forcejtype non-deforming
force-origin -4.0 0.5 -0.8
force.originlow 0.0 0.0 0.0
force.originjhigh -4.5 0.5 -0.8
forcedirection -1.0 0.0 0.0
force-magnitude 8000.0
force..magnitudeconstraints 0.0 10000
asleep no

defend

/* Additional forces (rightengine, left_aileron,...) would follow here. */
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/* The next two definitions specify a polygon lighting/shading characteristic.
Note: each subtoken is separate and none are required (defaults used). */

defmaterial su25mat0
emission 0.00 0.00 0.00
ambient 0.047059 0.086275 0.047059
diffuse 0.235294 0.431373 0.235294
specular 0.00 0.00 0.00
shininess 0.00
alpha 1.00

defend

defmaterial su25matl
emission 0.00 0.00 0.00
ambient 0.047059 0.094118 0.047059
diffuse 0.235294 0.470588 0.235294
specular 0.00 0.00 0.00
shininess 0.00
alpha 1.00

defend

/* The remaining defmaterials go here. */

/* A particular lighting/shading characteristic is activated. */
setmaterial su25mat0

/* The next definition specifies a triangular polygon.
Note: each line is NOT separate and ALL are required. */

defpoly/* Normal, number of vertices and vertex coordinates. */

0.875439 -0.483329 0.00
3
40.142231 6.476233 1.029732
39.087486 4.565808 -1.076130
40.142231 6.476233 -1.029732

/* The remaining primitive definitions go here. */

B. INTEGRATION SAMPLE

The following code fragments demonstrate the various phases of OFF file integration

with the force/object functions. For more detail, see Appendix B: PHYSICALLY-BASED

PROCEDURES.
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1. Initializing The Environment

initialize-environmento;

/* Let's add gravity. *
add-global-.forceO;
strcpy(current-global-forceptr->name,"gravity");
modify-force..origin(current-global forceptr,0.0, 1.0,0.0);
modify...orce direction(current-global-forceptr,0.0,- 1.0,0.0);

2. Adding And Modifying An Object

objectptr = reac--object("sample filename");
ready...object-for -display(objectptr);
add-object-to -environment(objectptr);

1* Any characteristics (specified or not in the OFF file) can be modified.
We can check if a particular object characteristic has changed (e.g. by polling
an input device), add adjust it prior to calculating the objects' motion. ~
modify.. objecLposition(objectptr,px,py,pz);
modify..object..position-lower(objectptr,Ix,ly,lz);
modifyopbjecLposition-pper(objectptr,ux,uy,uz);
modify-object-otation(objectptr,rx.ry,rz);
modify-opbject -rotation lower(objectptrlx,ly,lz);
modify-object-rotation..upper(objectptr,ux,uy,uz);
modify....bjecjinear -velocity(objectptr,vx,vy,vz);
modify....bjectj inear -velocity-jower(objectptrlxlylz);
modify..objectjinear -velocity-..upper(objectptr,ux,uy,uz);
modify-.objecLangular -velocity(objectptr,vx,vy,vz);
modify...bject..angular -velocityjower(objectptr,lx,ly,lz);
modify...bject..angular -velocityji pper(objectptr,ux,uy,uz);
modify...object-mass(objectptr,mass,mx,my,mz);
modify...bject-bounds(objectptr,radius,latitude,longitude,vertical);

/* If the object needs to be removed, we delete it. ~
delete-object-from environment(objectptr);

/* If we want to suspend all forces on a particular object, *
suspend-object(objectptr);

/* or to re-allow all active forces to influence the object. *
wakeup-.object(objectptr);

3. Adding And Modifying A Force

add~local -force(objectptr);
/* or */
add-globaljforceo;
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/* Any characteristics (specified or not in the OFF file) can be modified. */
We can check if a particular force characteristic has changed (e.g. by polling
an input device), add adjust it prior to calculating the objects' motion. */
modify-force_.origin(forceptr,ox,oy,oz);
modify-forceorigin-lower(forceptr,lx,ly,lz);
modify jorce.origin-upper(forceptr,ux,uy,uz);
modify-force-direction(forceptr,ox,oy,oz);
modify-force-magnitude(forceptr,magnitude);
modifyjforce.magnitude__constraints(forceptr,lower,upper);
modify-force-type(forceptr,type);

/* If the force needs to be removed, */
delete_localjforce(objectptr,forceptr);
/ or */
delete.global force(forceptr);

/* If we want to suspend a force, */
suspendjforce(forceptr);
* or to re-allow this force to influence the object. */

wakeup force(forceptr);

4. Updating The Object's Physics

The following is a simple example of a code fragment to traverse the list of all

forces attached to all objects. Parallelization of the force computations per object is part of

continuing research.

* olist is an object list global variable, action.objectptr is a local variable that
points to an object*/
action_objectptr = olist.first;

/* For each object in the environment, */
while (action.objectptr != (OBJECT *) NULL) (
/* If some time has elapsed and the object is awake, */
if ((action-objectptr-Aasttime > 0.0) && (!action-objectptr->asleep)) (

/* Calculate the time since the object was last moved. */
deltatime = delta.time(&(action-objectptr->last-time));
* Zero the previous summation force 6-vector. */

for (i--0; i<3; i++) (
summoveptr->rotation[i] = 0.0;
summoveptr->translation[i] = 0.0;)

/* action forceptr is a local variable that points to a force*/
action-forceptr = actionobjectptr->firstforceptr;
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/* For each local force attached to this object, */
while (actionjforceptr != (FORCE *) NULL)

/* If this force deforms and is awake, */
if ((actionjforceptr->type == DEFORMING) &&

(!cin forceptr->asleep))(
/* If the object is not already exploding, apply the force. *
if (!action-objectptr->explodingjflag)

apply-deforrning-force-o.-object(action-objectptr,
actionjforceptr, deltatune);

else
continue...explosion(action..objectptr,deltatime);

/* If this force does not deform and is awake, apply it. *
else if ((actionjforceptr->type == NONDEFORMING) &&

(!actionjforceptr->asleep))
apply...nondeforming-force -to -object(action-objectptr,

actionjforceptr, deltatime);
/* Continue with the next force. */
action-forceptr = action-forceptr->next;

action-forceptr = glist.first;
/* For each global force, */

while (actionjorceptr != (FORCE *) NULL)(
apply-.global-force-to-object(action..objectptr,

action-forceptr, deltatime);
P* Continue with the next force. *I
action-forceptr = action-forceptr->next;

update-object-physics(action-objectptr,deltatime);

/* Otherwise, a Bt has not passed. *
else action-objectptr->last-time = nowjimeo;

/* Continue with the next object. */
action -objectptr = action...objectptr->next;
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VI. PERFORMANCE

The following tables are used to illustrate the cost associated with this physically-

based modeling technique. Test case group A involves a small, average and large polygon

count object with small, average and large non-deforming force lists (Table 4). Test case

group B involves small, average and large sets of an average polygon count object with

small, average and large non-deforming force lists (Table 5). Test case group C involves a

small, average and large polygon count object with a small deforming force list, during the

explosion phase (Table 6). All numbers are in frames/second.

TABLE 4: OBJECT SIZE VERSUS NUMBER OF FORCES

Small Polygon Average Polygon Large Polygon
Count (6) Count (165) Count (960)

Object Object Object

Single
Non-deforming 17.117 16.547 11.174
Force

Small Set of
Non-deforming 20.083 18.166 11.864
Forces (5)

Medium Set of
Non-deforming 19.923 18.063 11.519
Forces (10)

Large Set of
Non-deforming 19.525 17.876 10.765
Forces (20)
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TABLE 5: NUMBER OF OBJECTS VERSUS NUMBER OF FORCES

Average Number Large Number
of Objects (5) of Objects (10)

Small Set of
Non-deforming 11.861 8.441
Forces (5)

Average Set of
Non-deforming 11.525 8.179
Forces (10)

Large Set of
Non-deforming 10.935 8.025
Forces (20)

TABLE 6: OBJECT SIZE VERSUS A DEFORMING FORCE

Small Polygon Average Polygon Large Polygon
Count (6) Count (165) Count (960)

Object Object Object

Small Set of
Deforming 16.535 15.493 10.454
Forces

A note of interest in case A - the frame rate actually increases from one force to five

forces and then decreases from then on. We are reclaiming idle CPU time and improving

graphics-CPU overlap.

In the case of non-deforming forces, the frame rate decreases linearly with the total

number of non-deforming forces attached to all objects, (Figures 5.1 and 5.2). In the case

of deforming forces, the frame rate decreases linearly with the number of initial polygons

in the pre-destroyed object (Figure 5.3).
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VII. CONCLUSIONS AND FUTURE WORK

The use of physically-based modeling is still in its infancy at NPS. Previous

simulations were able to "fake" or "downplay" the expected visual clues from an object's

physical interactions. As hardware and software technology afford us with greater

capability in animation realism, we are obligated to strive for more accurate physical

modeling, but not at the expense of increased user workload to specify and control the

animation process. The extensions to OFF present a simplified mechanism for building

models with physical characteristics and adding controlling functions that are as complex

as necessary given the current hardware support.

Future work includes the implementation of the ACTION CONTROL layer using the

specification in Chapter III. Generation of the mapping function matrices could be achieved

quite easily by selecting the object/force pair and then taking "snapshots" of a series of

object motion/force description couplings. Each coupling would then be displayed in a 2D

graph (object component vs. force component) for any desired function smoothing/

modification. Addition, deletion, and modification mechanisms would function similarly

to identical object functions in key-framing systems.

Further refinements to the integration process would include parallelization of the

force sampling process and the addition of an adaptive algorithm for more accurate

positioning of objects with rapidly fluctuating forces.
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APPENDIX A INTEGRATING OBJECTS INTO EXISTING
PROGRAMS

A. OFF TOKEN ADDITIONS

#define DEFUNITSTOKEN 200
#define DIMENSIONUNITSTOKEN 201
#define FORCEUNITSTOKEN 202
#define MASSUNITSTOKEN 203

#define DEFPHYSICSTOKEN 210
#define LOCATIONTOKEN 211
#define ORIENTATIONTOKEN 212
#define LINEARVELOCITYTOKEN 213
#define ANGULARVELOCITYTOKEN 214
#define MASSAMOUNTITOKEN 215
#define MASSCENTERTOKEN 216
#define ELASTICITYTOKEN 217
#define BVRADIUSTOKEN 218
#define BVLATITUDETOKEN 219
#define BVLONGITUDETOKEN 220
#define BVERTICALTOKEN 221
#define SETVIEWPOINTOKEN 222

#define DEFBENDTOKEN 230
#define DEFBREAKTOKEN 231
#define DEFSPRINGTOKEN 232
#define DEFMASSPERSATOKEN 233

#define SETBENDTOKEN 240
#define SETBREAKTOKEN 241
#define SETMASSPERSATOKEN 242
#define SETSPRINGTOKEN 243
#define SETGRANULARITYTOKEN 244
#define DEFBENDPOLYTOKEN 250
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#define DEFFORCETOKEN 260
#define FORCETYPETOKEN 261
#define FORCEORIGINTOKEN 262
#define FORCEDIRECTIONTOKEN 263
#define FORCEMAGNITUDETOKEN 264
#define FORCEASLEEPTOKEN 265

#define DEFBALLTOKEN 270
#define DEFCONETOKEN 271
#define DEFCYLINDERTOKEN 272
#define DEFBOXTOKEN 273

#define RADIUSTOKEN 280
#define PANELSTOKEN 281
#define MODETOKEN 282
#define HEIGHTTOKEN 283
#define WIDTHTOKEN 284
#define LENGTHTOKEN 285
#define LOCATIONLOWERCONSTRAINTSTOKEN 290
#define LOCATIONUPPERCONSTRAINTSTOKEN 291
#define ORLENTATIONLOWERCONSTRAINTSTOKEN 292
#define ORIENTATIONUPPERCONSTRAINTSTOKEN 293
#define LINEAR VELOCITYLOWERCONSTRAINTSTOKEN 294
#define LINEAR VELOCITYUPPERCONSTRAINTSTOKEN 295
#define ANGULAR VELOCITYLOWERCONSTRAINTSTOKEN 296
#define ANGULAR VELOCITYUPPERCONSTRAINTSTOKEN 297

#define FORCEORIGINLOWERCONSTRAINTSTOKEN 300
#define FOR CEORIGINUPPERCONSTRAINTSTOKEN 301
#define FORCEMAGNITUDECONSTRAINTSTOKEN 302
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B. SUBPRIMITIVE DATA STRUCTURES USED

struct defpoly
long ncoords;

float nrl[31;
float deltapII3];
float velocity[3];
int explodingflag,
bendingflag;
float *xyz;

typedef struct defpoly DEFPOLY;

struct defbend
char *name;
float bendvalue;

typedef struct defbend DEFBEND;

struct defbreak
char *name;
float breakvalue;

typedef struct defbreak DEFBREAK;

struct defspring
char *name;
float constant;
float minimum;

typedef struct defspring DEFSPRING;

struct defmfasspersa(
char *'nai,.;
float masspersa;

typedef struct defmasspersa DEFMASSPERSA;
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struct setgranularity{
float value;

typedef struct setgranularity SETGRANULARITY;
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C. SUBPRIMITIVE DATA STRUCTURES USED

struct defball
float radius;

float panels;
int mode;

typedef struct defball DEFBALL;

struct defcone
float radius;
float panels;
float height;

typedef struct defcone DEFCONE;

struct defcylinder
float radius;
float panels;
float height;

typedef struct defcylinder DEFCYLINDER;

struct defbox
float length;

float width;
float height;
1;
typedef struct defbox DEFBOX;
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D. OBJECT PHYSICS DATA STRUCTURES USED

struct units (
char *forceunits;
char *massunits~;
char *dmniouis
float forceconversion;
float massconversion;
float dimensionconversion;

typedef struct units UNITS;

struct physics(
float mass;
float massxyzjl3];
float elasticity;
float acceleration[1611;
float velocity[6];
float velocity-constraints[2][6];
float position[3];
float position constraints[2][3];
float rotation[3];
float rotation-constraints[2][31;
float bvradius;
float bvlatitude;
float bvlongitude;
float bvvertical;
float viewpoint[3];

typedef struct physics PHYSICS;

struct force{
char *name;
nt type;

float origin[31;
float origins-onstraints[21 [3];
float direction[3];
float magnitude;
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float magnitudesconstraints[21;
int asleep;
struct force *next;
struct force *prev;

typedef struct force FORCE;

struct movement
float rotation[3];
float translation[3];

typedef struct movement MOVEMENT;
struct opcodeI
long whattype;
struct opcode *prev;
struct opcode *next;
union dptr data;

typedef struct opcode OPCODE;

struct obj (
struct opcode *first;
struct opcode *last;
char *name;
float first..origin[3];
long origin-set;

UNITS *ufljt5p7;
PHYSICS *physicsptr;
FORCE *fi1.stforcept.;
FORCE *lastforcept..

float lastjime;
int asleep;
int bending-flag,
exploding-flag;

struct obj *next;
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struct obj *prev;

typedef struct obj OBJECT;

struct objectlist
OBJECT *first;
OBJECT *last;

typedef struct objectlist OBJECTIST;

struct globalforcelist
FORCE *fjj.st;

FORCE *last;

typedef struct globalforcelist GLOBALFORCELIST;
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APPENDIX B PHYSICALLY-BASED PROCEDURES

A. ENVIRONMENT FUNCTION SPECIFICATIONS

void initialize environmento

Creates the environment (lacking objects/forces). Initializes the current
object, local and global forces.

void add.object to environment(Object*)

Adds the specified object to the environment. This object becomes the
current object.

void deleteobject from environment(Object*)

Deletes the specified object from the environment. Returns any allocated
memory assigned/linked to this object. The first, last and current objects
are adjusted accordingly.

B. OBJECT FUNCTIONS

OBJECT *duplicateobject(Obj.:t*

Creates another object in memory with identical information to the
specified object. Useful prior to when you want to destroy an object, thus
keeping a undamaged object intact.

void suspend object(Object*)

Suspends the specified object so that it is no responding to any force

inputs.

void wakeup object(Object*)

Wakes up the specified object so that it will respond to all active force

inputs.
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void modifyobject position(Object*, float px, py, pz)

Alters the specified object's X, Y, and Z position components.

void modifyobjectposition lower(Object*, float Ix, ly, lz)

Alters the specified object's X, Y, and Z position lower boundary values.

void modifyobject position upper(Object*, float ux, uy, uz)

Alters the specified object's X, Y, and Z position upper boundary values.

void modifyobject rotation(Object*, float rx.ry, rz)

Alters the specified object's X, Y, and Z rotation components.

void modifyobject rotation lower(Object*, float Ix, ly, lz)

Alters the specified object's X, Y, and Z rotation lower boundary values.

void modifyobject rotation upper(Object*, float ux, uy, uz)

Alters the specified object's X, Y, and Z rotation upper boundary values.

void modify_object linear-velocity(Object*, float vx, vy, vz)

Alters the specified object's X, Y, and Z linear velocity components.

void modifyobject linearvelocityjlower(Object*, float Ix, ly, lz)

Alters the specified object's X, Y, and Z linear velocity lower boundary

values.

void modifyobject linearvelocityupper(Object*, float ux, uy, uz)

Alters the specified object's X, Y, and Z linear velocity upper boundary
values.

void modifyobject angular velocity(Object*, float vx, vy, vz)

Alters the specified object's X, Y, and Z angular velocity components.
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void modify object linear-velocity lower(Object*, float Ix, ly, lz)

Alters the specified object's X, Y, and Z angular velocity lower boundary
values.

void modifyobject linear-velocityupper(Object*, float ux, uy, uz)

Alters the specified object's X, Y, and Z angular velocity upper boundary
values.

void modifyobject-mass(Object*, float mass, mx, my, mz)

Alters the specified object's mass and mass center.

void modifyobject bounds(Object*, float radius, latitude, longitude, vertical)

Alters the specified object's bounding volume as described by radius,
width, length and height.

void stop object(Object*)

Resets all of the specified object's velocities.

C. GENERAL FORCE FUNCTIONS

void add local force(Object*)

Adds a default local force to the end of the specified object's force list.

void deletelocal force(Object*, force*)

Deletes the specified force from the specified object's force list. Returns
the memory allocated to the force. The first, last and current local forces
are adjusted accordingly.

void delete global force(Force*)

Deletes the specified global force from the global force list. Returns the
memory allocated to the force. The first, last and current global forces are
adjusted accordingly.
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void suspend force(Force*)

Suspends the specified force so that it will not affect the object to which it
is attached.

void wakeup force(Force*)

Wakes up the specified force so that it will affect the object to which it is
attached.

void modify forceorigin(Force*, float ox, oy, oz)

Alters the specified force's X, Y, and Z origin components.

void modify forceorigin upper(Force*, float ux, uy, uz)

Alters the specified force's X, Y, and Z origin upper boundary values.

void modify forcedirection(Force*, float ox, oy, oz)

Alters the specified force's X, Y, and Z direction components.

void modifyforce magnitude(Force*, float magnitude)

Alters the specified force's magnitude.

void modifyforcemagnitude constraints(Force*, float lower, upper)

Alters the specified force's magnitude lower and upper boundary values.

void modify forcetype(Force*, Char* type)

Alters the specified force's type (DEFORMING,

NON_DEFORMING,GLOBAL)

D. DEFORMING FORCE FUNCTIONS

void polymidpoint(defpoly*, middle)

void text poly.midpoint(defpolyt*, float* middle)

void line midpoint(float* A, B, middle)
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void text line-midoint(float* A, B, middle)

float euclid(float* A, B)

Returns the Euclidean distance between the two float triples.

float text.eudid(float* A, B)

Returns the Euclidean distance between the two float triples.

float texttriangle area(float* A, B, C)

Returns the triangular area between the three float triples.

float poly.area(defpoly*, float* middle)

Returns the area of the specified polygon given the float triple midpoint.

float bendpoly.area(defbendpoly*)

Returns the area of the specified bent polygon.

float textpoy_area(defpolyt*, float* middle)

Returns the area of the .specified textured polygon given the float triple
midpoint.

int shatter break or move(Force*, float* distance, area)

Determines the result of the specified force, traveling the specified
distance, and hitting a polygon of specified area.

void add_the_vertices(defpoly*, float* A, B, middle)

Adds the three vertex float triples to the polygon.

void text add the vertices(defpolyt*, float* A, B, middle)

Adds the three vertex float triples to the textured polygon.
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OPCODE *triangle into two(object*, opcode*)

Replaces the specified object's triangular polygon with two smaller
triangular polygons. Returns the memory allocated to the polygon.

OPCODE *text triangleintotwo(object*, opcode*)

Replaces the specified object's textured triangular polygon with two
smaller textured triangular polygons. Returns the memory allocated to the
textured polygon.

OPCODE *shattertriangulate(object*, opcode*)

Replaces the specified object's triangular polygon with many smaller
triangular polygons. Returns the memory allocated to the polygon.

OPCODE *text shatter triangulate(object*, opcode*)

Replaces the specified object's textured triangular polygon with many
smaller textured triangular polygons. Returns the memory allocated to the
textured polygon.

OPCODE *bend triangulate(object*, opcode*, float* middle)

Replaces the specified object's polygon with a bent polygon. Returns the
memory allocated to the polygon.

void apply bend force to poly(defbendpoly*, force*,
float* distance, area,deltatime)

Modifies the specified bent polygon's shape after a force hits it.

void move polyinthe directionof..explosion(poly*, force*,
float* direction,distance, area,deltatime)

Modifies the specified polygon's position after a force hits it.

void move-textpolyin the direction of explosion(defpolyt*, force*,
float* direction,distance, area,deltatime)

Modifies the specified textured polygon's position after a force hits it.
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OPCODE *apply forceto poly(object*, opcode*, force*, float* deltatime)

Breaks, bends or moves the specified polygon.

OPCODE *apply force to.textpoly(object*, opcode*, force*, float* deltatime)

Breaks, bends or moves the specified polygon.

void applydeforming_force_toobject(object*, force*, float* deltatime)

Breaks, bends or moves the specified object.

void continue explosion(object*, float* deltatime)

Continues the explosion process on the object after the specified force has
been removed.

E. NON-DEFORMING FORCE FUNCTIONS

void update.object physics(object*,summove*, float* deltatime)

Calculates the updated world frame of reference position, orientation,
velocities, and accelerations of the specified object.

void apply nondeforming force_toobject(object*, force*,summove*)

Calculates the affect (linear and radial) of the specified local force on the
specified object.

void applyglobalforce to object(object*, force*,summove*, float* deltatime)

Calculates the affect (linear) of the specified global force on the specified
object.
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APPENDIX C

NPS OFF MOVER TOOL

USERS GUIDE

F. Introduction

The objective of the manual is to provide a broad overview of the nature and

capabilities of the Mover Tool, plus a specific "how to" guide to rapidly orient both the

novice and advanced user. The contents of this manual can also be found in the help

subsystem of the Mover Tool.

1. Organization

a. Files

All files for the Mover tool executable exist in the -zyda/rdobj directory. It is advised

to place this directory in your path and/or adding an alias to run the Mover Tool (mover).

2. Hardware

The Mover Tool is compatible on all Silicon Graphics (SGI) Iris workstations.

Advanced OFF features requiring VGX hardware (such as textured surfaces) are supported.

The interface was designed with the NPS Panel Designer and utilizes several virtual

controls, also known as "widgets" which simulate mechanical dials, sliders, and push

buttons. The only required input devices are a mouse and keyboard.

a. Mouse

The mouse is used to manipulate the virtual controls in the various panels

of the user interface. A particular control is activated by positioning the mouse cursor over

it and pressing the LEFT mouse button. The MIDDLE mouse button, when pressed with
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the LEFT button, lowers the sensitivity of the selected actuator. This facility is useful when

"fine-tuning" an actuator's value. The RIGHT mouse button activates a simple pulldown

menu with two selections: HELP subsystem and EXIT the Mover Tool.

Warning: the EXIT selection does not prompt for confirmation!

b. Keyboard

The keyboard is used to enter descriptive names for an object, force and

OFF file names.

3. Navigating around the Tool's panels

The Mover Tool's interface consists of a main viewing window with the

controls in several panels along the left side, (Figure C. 1).

Figure C.1 Full Screen
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At start-up, the only control panels visible are the OBJECT, FORCE and

ACTION panels.

a. Main Viewing Window

This is the largest window in the middle of the screen, (Figure C.2).

Figure C.2 Main Viewing Window

Initially, the only object visible is a checkerboard surface of gray and

white one hundred thousand square meter tiles. This uniform ground feature was selected

over a textured surface to facilitate the visual quantification of an object's size, acceleration

and velocity.

b. OBJECT Panel

This panel is in the upper left comer, (Figure C.3)
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Figure C.3 Object Panel

The panel's controls start with a typein that displays the name of the
"currently selected" object. Initially; the typein displays the fact that there are no objects in

the environment. As each object file is added, the typein displays the name of the file

containing the object. The user can change the name by clicking on the typein, backspacing

over each incorrect letter or pressing the DELETE key to clear the typein, and then entering

the new name followed with the ENTER/RETURN key.

To the right of the typein is a toggle button indicating the object's status.

If highlighted, the object is ACTIVE and under the influence of all ACTIVE forces

attached to it. An INACTIVE object remains at equilibrium and its motion is described by

its inertia.

Below is a row of four object manipulator buttons. The ADD button

displays a scrollable directory browser, (Figure CA)
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Figure C.4 Directory Browser

Highlighting an OFF filename with the LEFT mouse button and then

clicking on the ACCEPT button displays the object in the environment and removes the

browser. Scrolling the current directory up or down is accomplished with the arrow keys

on the keyboard, clicking on the scrollbar arrows to the left of the listing, or by clicking and

dragging the "foot" or highlighted dark area within the scrollbar. Changing directories is

accomplished by highlighting a directory name and then clicking on the directory listing

ACCEPT button.

The DELETE button on the OBJECT panel removes the currently

selected object. The buttons to either side of ADD/DELETE traverse the list of

environment objects. The button on the left labeled "<-" selects the previous object while

the button on the right labeled" " selects the next object. To the right is the MASS button

that activates the MASS ATIRIBUTES panel with vertical sliders which control the

current object's MASS AMOUNT, CENTER of MASS, and ELASTICITY, (Figure C.5)
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Figure C.S Mass Attributes Panel

Below is a row of six vertical linear position and velocity sliders. The

default boundary values for the setting of velocity and position are +/- 10,000 meters and

meters/second respectively. In the midst of these sliders is the CONSTRAINTS button that

activates the OBJECT CONSTRAINTS panel with vertical sliders which control the linear/

angular position and velocity boundary values, (Figures C.6a and C.6b)

Figure C.6a Object Constraints Panel (left)
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Figure C.6b Object Constraints Panel (right)

The HIGH sliders set the upper limits for possible position, rotation,

linear and angular velocity values. The LOW sliders set the respective lower limits. Below

is a row of three dials controlling ROLL, PITCH and YAW. To the right of each dial are

two digital repeaters that indicate the current object's angular position and velocity.
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c. FORCE Panel

This panel is below the object panel, (Figure C.7).

! : .-': : ::.......:.. :-..

.h I l *gJ.ltf l
.......... . ......... .. ..2 ......

Figure C.7 Force Panel

The panel's controls start with a typein that displays the name of the

"currently selected" force. Initially, the typein displays the fact that there are no forces

attached to the current object. As each force is added, the typein indicates that the force is

yet unnamed. The user can enter a new name or change an existing name by clicking on the

typein, backspacing over each incorrect letter or pressing the DELETE key to clear the

typein, and then entering the new name followed with the ENTER/RETURN key.

To the right of the typein is a toggle button indicating the force's status.

If highlighted, the force is ACTIVE and will influence the object to which it is attached. An

INACTIVE force is in a state of suspended animation.
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Below is a row of four force manipulator buttons. The ADD button adds

a default force to the list of forces attached to the current object. The DELETE button

removes the currently selected force.

The buttons to either side of ADD/DELETE traverse the list of attached

forces. The button on the left labeled "<-" selects the previous force while the button on

the right labeled "'>" selects the next force. The "current" NON-DEFORMING force is

displayed as a GREEN vector while the remaining forces are BLUE. DEFORMING forces

are always displayed as a RED 3D snowflake.

Below is a row of six vertical sliders for changing the force's origin and

direction. The default boundary values for the setting of the force's origin values are +/-

10,000 meters. In the midst of these sliders is the CONSTRAINTS button that activates the

FORCE CONSTRAINTS panel with vertical sliders which control the force origin and

magnitude boundary values (Figure C.8).

Figure C.8 Force Constraints Panel
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The HIGH sliders set the upper limits for possible origin and magnitude

values. The LOW sliders set the respective lower limits. Next is a horizontal slider that sets

the force magnitude. The last controls in the panel are two toggle buttons that indicate the

type, DEFORMING or NON-DEFORMING, of the force.

4 ACTION Panel

This panel is in the lower left comer, (Figure C.9)

Figure C.9 Action Panel

The first two buttons control the environment's animation. Highlighting

the GO button puts into motion all active objects with active forces. Removing the button's

highlight halts the animation process. Pressing the RESET button resets the current object's

linear/angular positions and velocities. The third button, EYE, activates a new panel that

allows the user to control eye position and direction. The fourth button, FILES, activates a

new panel that allows the user to save the current object back to an OFF file, save all objects

in the environment to an OFF theater file (group of files), and add the objects in an OFF

theater file to the environment. The last button, HELP, activates a scrollable window with

the contents of this manual.
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(1) EYE Panel -This panel appears to the right of the ACTION panel

(Figure C. 10).

Figure C.10 Eye Panel

This panel has controls for eye range, azimuth, and height from a

specified point. The default settings place the viewpoint looking from a point 100 meters

radius and 20 meters height from the center of the tiled floor. The user may select to shift

the focus TO the currently selected object, with the control parameters relative from the

object's center. The user may also select to view FROM the current object in the direction

of the control parameters. If an object viewpoint is not specified in the OFF file, a default

viewpoint centered 10% above the object's height is used.

(2) FILE Panel -This panel appears above the ACTION panel (Figure

C. 11).

Figure C.11 File Panel

57



This panel includes a typein to specify the saved OFF object or OFF

theater filename. If a unique filename is not specified, the user is notified that an existing

file will be overwritten and is given the option to cancel the save operation. If one or more

objects have the same name and the user elects to save all objects into a theater file, the user

is notified that a filename conflict exists and that the last object with the duplicate name

will overwrite the other objects with the duplicate name. Clicking the LOAD GROUP

button to load an OFF theater file, displays a scrollable listing of the current directory. The

procedure for selecting a theater file is identical to that for selecting an OFF object file.

4. How to Modify a Sample OFF File

a. Adding, Deleting, Selecting Objects

At the command line of an IRIS in the Graphics Lab, type "mover". The

OBJECT, FORCE and ACTION panels appear to the left of the main viewing window. In

the OBJECT panel, click on the ADD button. The directory browser appears displaying the

contents of the current directory. Highlight an OFF file of interest and click on the

ACCEPT button. The directory browser disappears and the OFF object appears in the

center of the main viewing window. Click on the typein at the top of the OBJECT panel

and press the DELETE key. Enter another meaningful name for the OFF object, followed

with a ENTER/RETURN. Add another OFF object in a similar fashion. Use the "<<" and

">>" keys on the OBJECT panel to select the current object. Press the DELETE button and

that object disappears. Use the ADD button to add a couple more objects.

b. Object Attributes

(1) Mass - Select one of the objects and press the MASS button. The

MASS panel appears to the right. The panel will display default mass values if the OFF

object did not have any previous mass data. Adjust the MASS slider to reflect a mass of
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5,000 kilograms and adjust the ELASTICITY slider to reflect an energy absorption

characteristic of 0.8. Click on the HIDE button when done.

(2) Constraints - Click on the object LIMITS button on the OBJECT

panel. The OBJECT CONSTRAINTS panel appears to the right. Adjust the Y POS

(position) sliders to constrain the object's range of vertical movement from 0.0 to 1000.0

meters. Adjust the X LVEL (linear velocity) sliders to constrain the object's range of fore/

aft velocity from -10.0 to 50.0 meters/second.

(3) Position and Orientation - Adjust the three position sliders and three

ROLL, YAW, PITCH dials to position and orient the object as desired.

(4) Velocity - Adjust the three velocity sliders to specify the object's

initial linear velocity as desired.

c. Adding, Deleting, Selecting Forces

Click on the ADD button on the FORCE panel. A default force is

appended to the current object's force list. Click on the typein at the top of the FORCE

panel and press the delete key. Enter another meaningful name for the force, followed with

a ENTER/RETURN. Add another force in a similar fashion. Use the "<<" and '5>" keys

on the OBJECT panel to select the "current" force. Press the DELETE button and that force

is removed from the force list. Use the ADD button to add a couple more forces.

d. Non-deforming Force Attributes

(1) Constraints - Click on the force LIMITS button on the FORCE

panel. The FORCE CONSTRAINTS panel appears to the right. Adjust the X ORIGIN

sliders to constrain the force's range of horizontal movement from -10.0 to 0.0 meters.

Adjust the MAGNITUDE sliders to constrain the force's range of magnitude from 0.0 to

5000.0 newtons.
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(2) Origin and Direction - Adjust the three origin sliders to position (-

5.0, 0.0, 0.0). This is a point of affect 5.0 meters behind the current object. Adjust the three

direction sliders to direction (1.0, 0.0, 0.0). This force direction will push the object

forward.

(3) Magnitude - Adjust the magnitude slider to specify 500.0 newtons.

Notice the vector adjacent to the object.

(4) Type - Click on the NON-DEFORMING button.

e. Point of View

Click on the EYE button on the ACTION panel. The EYE panel appears

to the right. Click on the TO button as we may want to keep the current object in the center

of the main viewing window. Select a comfortable viewpoint, 50.0 meters out and 10.0

meters up. Our eye will maintain this relative position from the object. Click on the FROM

button and notice that neither button is highlighted. This viewpoint is measured from the

environment's center. Click on the FROM button again, as we may want to view the

environment from the object's point of view. Now the sliders specify a point in space from

the object's viewpoint. Go back to the TO position and click on the HIDE button when

done.

f. Non-deforming Movement

Click on the GO button on the ACTION panel. The object will start to

accelerate forward, slowly increasing in velocity. Adjusting the force parameters will result

in different resultant motion. Clicking on the GO button again stops the animation. Clicking

on the RESET button, sets the current object's position, orientation and velocities to their

default values.
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g. Deforming Force Attributes

Delete all forces on the current object. Add a new force in the prescribed

manner, positioning it at a point coincident with the object's center (0.0, 0.0, 0.0) and click

on the DEFORMING button.

h. Deforming Movement

Click on the GO button on the ACTION panel. The polygons within the

object will start to shatter and explode, assuming that the polygons' breaking value is low

enough for the force applied. Clicking on the GO button again stops the explosion. Clicking

on the RESET button, sets the current object's position, orientation and velocities to their

default values. We cannot "re-assemble" a destroyed object as yet. The alternative is to

replace the damaged object with an undamaged copy by deleting the destroyed bject and

replacing it from disk.

i. Saving Objects and Groups of Objects

After you have specified an object and the attached forces, you will want

to save it for future use. Click on the FILES button on the ACTION panel. The FILES panel

appears to the right. Click on the typein at the top of the FILES panel and press the

DELETE key. Enter another meaningful name for the OFF filename, followed with a

ENTER/RETURN. Then click on the SAVE button. Click on the SAVE button again. Since

the filename in the typein currently exists, you will see a message indicating that the current

olject will overwrite the existing file. You can confirm or cancel this operation.

You can also save several objects to an OFF theater file in a similar

method. Specify an OFF theater filename and then click on the SAVE GROUP button. If

any of the objects in the theater file will have the same name, you will see a message

indicating that the file with the duplicate object name will contain the last object with the

duplicate name.You can confirm or cancel this operation.
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